手机版
您的当前位置: 好论文网 > 教育论文 > 浅议艺术欣赏|浅议初中数学教学中如何培养学生思维能力

浅议艺术欣赏|浅议初中数学教学中如何培养学生思维能力

来源:教育论文 时间:2018-07-25 点击: 推荐访问:提高学生数学思维能力

  摘要:培养学生思维能力的方式有很多种,尤其处于初中阶段的学生,是培养其思维能力的好时机,这里对如何设计好的开放型题来培养学生的思维能力进行了探讨。
  关键字:初中数学;开放型;思维
  一、运用不定型开放题,培养学生思维的深刻性
  不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。如:学习“真分数和假分数”时,在学生已基本掌握了真假分数的意义后,问学生:b/a是真分数,还是假分数?因a、b都不是确定的数,所以无法确定b/a是真分数还是假分数。在学生经过紧张的思考和激烈的争论后得出这样的结论:当b  这样的练习,加深了学生对“分率”和“用分数表示的具体数量”的区别的认识,巩固了分数应用题的解题方法,培养了学生思维的深刻性,提高全面分析、解决问题的能力。
  二、运用多向型开放题,培养学生思维的广阔性
  多向型开放题,对同一个问题可以有多种思考方向,使学生产生纵横联想,启发学生一题多解、一题多变、一题多思,训练学生的发散思维,培养学生思维的广阔性和灵活性。然后引导学生比较哪种方法最简便,哪种思路最简捷。
  可以给学生最大的思维空间,使学生从不同的角度分析问题,探究数量间的相互关系,并能从不 同的解法中找出最简捷的方法,提高学生初步的逻辑思维能力,从而培养学生思维的广阔性和灵活性。
  三、运用多余型开放题,培养学生思维品质的批判性
  多余型开放题,将题目中的有用条件和无用条件混在一起,产生干扰因素,这就需要在解题时,认真分析 条件与问题的关系,充分利用有用条件,舍弃无用条件,学会排除干扰因素,提高学生的鉴别能力,从而培养 学生思维的批判性。
  如:一根绳子长25米,第一次用去8米,第二次用去12米, 这根绳子比原来短了多少米?
  由于受封闭式解题习惯的影响,学生往往会产生一种凡是题中出现的条件都要用上的思维定势,不对题目 进行认真分析,错误地列式为:25-8-12或25-(8+12)。
  做题时引导学生画图分析,使学生明白:要求这根绳子比原来短了多少米,实际上就是求两次一共用去多少米,这里25米是与解决问题无关的条件,正确的列式是:8+12.
  通过引导分析这类题,可以防止学生滥用题中的条件,有利于培养学生思维的批判性,提高学生明辨是非、去伪存真的鉴别能力。
  四、运用隐藏型开放题,培养学生思维的缜密性
  隐藏型开放题,是解题所需的某些条件隐藏在题目的背后,如不注意容易遗漏。在解题时既要考虑问题及 明确的条件,又要考虑与问题有关的隐藏着的条件。这样有利于培养学生认真细致的审题习惯和思维的缜密性 .
  如:做一个长8分米、宽5分米的面袋,至少需要白布多少平方米?
  解答此题时,学生往往忽视了面袋有“两层”这个隐藏的条件,错误地列式为:8×5,正确列式应为:8×5×2.
  解此类题时要引导学生认真分析题意,找出题中的隐藏条件,使学生养成认真审题良好习惯,培养学生思维缜密性。
  五、运用缺少型开放题,培养学生思维的灵活性
  缺少型开放题,按常规解法所给条件似乎不足,但如果换个角度去思考,便可得到解决。
  如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米?
  按常规的思考方法:要求圆的面积,需先求出圆的半径,根据题意,圆的半径就是正方形边长的一半,但 根据题中所给条件,用小学的数学知识无法求出。换个角度来考虑:可以设所剪圆的半径为r, 那么正方形的 边长为2r, 正方形的面积为(2r)[2]=4r[2]=12,r[2]=3,所以圆的面积是3.14×3=9.42(平方厘米)。
  还可以这样想:把原正方形平均分成4个小正方形, 每个小正方形的边长就是所剪圆的半径,设圆的半径 为r,那么每个小正方形的面积为r[2],原正方形的面积为4r[2],r[2]=12÷4,所剪圆的面积是3.14×(12 ÷4)=9.42(平方厘米)。
  通过此类题的练习,有利于培养学生思维的灵活性,提高灵活解题的能力。
  解答开放型习题,由于没有现成的解题模式,解题时往往需要从多个不同角度进行思考和深索,且有些问 题的答案是不确定的,因而能激发学生丰富的想象力和强烈的好奇心,提高学生的学习兴趣,调动学生主动参与的积极性。

教育论文推荐文章

好论文网 www.ho59.com

Copyright © 2002-2018 . 好论文网 版权所有 京ICP备10015900号

Top